
Abstract Diversification and speciation processes are

influenced by intrinsic (ecological specialization, dis-

persal) and extrinsic (habitat structure and instability)

factors, but the effect of ecological characteristics on

dispersal is difficult to assess. This study uses mito-

chondrial control region sequences to investigate the

population structure and demographic history of the

endemic Lake Tanganyika cichlid Neolamprologus

caudopunctatus with a preference for the rock-sand

interface along two stretches of continuous, rocky

shoreline, and across a sandy bay representing a po-

tential dispersal barrier. Populations along uninter-

rupted habitat were not differentiated; whereas, the

sandy bay separated two reciprocally monophyletic

clades. The split between the two clades between

170,000 and 260,000 years BP coincides with a period

of rising water level following a major lowstand, and

indicates that clades remained isolated throughout

subsequent lake level fluctuations. Low long-term

effective population sizes were inferred from modest

genetic diversity estimates, and may be due to recent

population expansions starting from small population

sizes 45,000–60,000 years BP. Comparisons with avail-

able data from specialized rock-dwelling species of

the same area suggest that habitat structure and lake

level fluctuations determine phylogeographic patterns

on large scales, while fine-scale population structure

and demography are modulated by species-specific

ecologies.
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Introduction

Comparative studies of phylogeography and genetic

differentiation in sympatric taxa permit the appraisal of

historical and geographical influences on population

structure and diversification (Bermingham and Moritz

1998; Avise 2000; Arbogast and Kenagy 2001). Addi-

tionally, investigations of closely related species that

differ in their habitat and dietary preference, dispersal

ability, and other relevant traits, can reveal species-

specific responses to habitat structure and historic

events, and have potential to illustrate the interaction

between extrinsic and intrinsic factors on evolutionary

processes (e.g., Schneider et al. 1998; Lourie et al. 2005).

Cichlid species flocks of the East African Great

Lakes (Tanganyika, Malawi and Victoria) feature

rapid speciation rates, and a wealth of ecological and

behavioral diversity in a confined geographic space

[see Kocher (2004) and Salzburger and Meyer (2004);

and references therein], and provide ample opportu-

nity for comparative studies of ecology and evolution

within and between lakes (Kocher et al. 1993;

Sturmbauer et al. 2001; Pereyra et al. 2004). Endemic

flocks of hundreds of cichlid species in each of the lakes

(Meyer 1993) represent excellent model systems to
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examine modes and mechanisms of speciation

(Sturmbauer 1998; Seehausen and van Alphen 1999;

Kornfield and Smith 2000; Danley and Kocher 2001;

Streelman and Danley 2003; Seehausen 2004; Genner

and Turner 2005), as well as roles and interactions of

diversifying forces at intraspecific level (Sturmbauer

et al. 1997; Arnegard et al. 1999; Salzburger and Meyer

2004; Seehausen and Schluter 2004).

Several phylogenetic and population genetic inves-

tigations demonstrated that geologically or climato-

logically induced lake level fluctuations (Scholz and

Rosendahl 1988) played a major role in the evolu-

tionary history of lacustrine cichlids and influenced

diversification patterns, species distribution, and

intraspecific population structure in each of the Great

Lakes (McKaye and Gray 1984; Sturmbauer and

Meyer 1992; Verheyen et al. 2003; Rüber et al. 1998,

2001; Sturmbauer et al. 2001, 2005; Sturmbauer 1998;

Koblmüller et al. 2004, 2005; Brandstätter et al. 2005;

Duftner et al. 2005). Rossiter (1995) compared the

fluctuating lake level with a ‘‘species pump’’ causing

recurrent cycles of population fusion and fragmenta-

tion, thus promoting diversification among populations.

In particular, populations inhabiting rocky shore

sections in more shallow and moderately sloping basin

areas are highly affected by lake level changes, when

the shore line shifts with rising or dropping water

levels.

While the impact of lake level fluctuations on the

diversification of benthic cichlid communities is well

evidenced, it is less well understood how species-spe-

cific characteristics such as ecological specialization,

breeding behavior, mobility and territoriality affect

dispersal across habitat discontinuities and, conse-

quently, diversification potential. Direct tracking of

dispersing individuals is difficult, if not impossible to

undertake in these lakes, so that indirect evidence via

genetic data is a major source of information. Popu-

lation genetic studies of rock-dwelling cichlids (mbuna)

of Lake Malawi demonstrated that habitat disconti-

nuities in form of sandy beaches, marsh or deep water

act as migration barriers and curb gene flow even on a

very small geographic scale; whereas, gene flow is

unconstrained along continuous habitat (van Oppen

et al. 1997; Arnegard et al. 1999; Markert et al. 1999;

Danley et al. 2000). Habitat discontinuities also restrict

dispersal of rock-dwelling non-mbuna species (Pereyra

et al. 2004), while deepwater species of the genus

Copadichromis (Taylor and Verheyen 2001) and open-

water cichlids of the genus Diplotaxodon (Shaw et al.

2000) show no or very little geographic population

substructure. Evidence of constrained dispersal sup-

ports models of micro-allopatric diversification in the

particularly species-rich mbuna clade (Rico and Turner

2002), but other modes of speciation, e.g. through

disruptive sexual or natural selection, have been

proposed to explain the great diversity in taxa showing

less genetic population-structure (Turner 1994; Turner

and Burrows 1995; Danley and Kocher 2001).

With an age of 9–12 million years, Lake Tanganyika

is by far the oldest of the three Great Lakes (Cohen

and Soreghan 1993). About 200 species in 54 genera

(with more awaiting scientific description; Poll 1986;

Snoeks 2000; Turner et al. 2001) descended from nine

distinct lineages that colonized the emerging lake

(Salzburger et al. 2002; Koblmüller et al. 2005). Dis-

persal behavior apparently varies considerably among

the four rock-dwelling species studied to date in Lake

Tanganyika (Eretmodus cyanostictus, Rüber et al.

1998, 2001; Taylor et al. 2001; Sefc et al. unpublished;

Variabilichromis moorii, Duftner et al. 2006; Tropheus

moorii and Ophthalmotilapia ventralis, Sefc et al.,

unpublished). Major habitat barriers curb gene flow in

all four species, but various degrees of philopatry entail

different levels of population differentiation and iso-

lation by distance along continuous rocky coastlines in

V. moorii, E. cyanostictus and T. moorii; whereas, gene

flow is high in O. ventralis (Sefc et al., unpublished).

Heterogeneous patterns of population structure among

Lake Tanganyika rock-dwellers are consistent with the

phylogenetic, ecological and behavioral diversity of

this old species assemblage.

Many Lake Tanganyika cichlids display intraspecific

geographical variation in coloration and high levels of

interspecific morphological and ecological diversity, but

the data available so far suggest that population struc-

ture and dispersal behavior are not necessarily corre-

lated with the number of species or morphs in individual

clades. In the present study we investigate the popula-

tion structure of Neolamprologus caudopunctatus, a

member of the species-rich, substrate breeding Tang-

anyikan cichlid tribe Lamprologini (Sturmbauer et al.

1994; Stiassny 1997; Schelly et al. 2006), which accounts

for about 40% of the lake’s cichlid species.

Our sample sites span both continuous rocky shore

and a large sandy bay, which has previously been

identified as important dispersal barrier for strictly

rock-dwelling cichlids (Duftner et al. 2006, Sefc et al.

unpublished). Comparative data from multiple species

with different habitat preferences, ecological require-

ments and behaviors along the same stretch of coast-

line will increase our understanding of the interaction

between extrinsic (habitat structure and lake level

fluctuations) and intrinsic (dispersal behavior, ecolog-

ical specialization) factors in determining population

structure and consequently the potential for
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micro-allopatric diversification in the course of lacus-

trine cichlid radiations.

Materials and methods

Species information

Neolamprologus caudopunctatus inhabits the interme-

diate habitat of the rock-sand interface, but is occa-

sionally found over purely sandy or rocky bottom.

Populations show very little geographical color varia-

tion across the species’ distribution range in the

southern half of the lake, between Kapampa (Congo)

and Kala (Tanzania) (Kohda et al. 1996; Konings

1998). The small fish (TL < 6 cm) are light beige with

a yellow to orange colored dorsal fin and lack any

obvious sexual dimorphism. Large plankton-feeding

schools occur from shallow water to a depth of more

than 25 m. The diet of this species consists of all kinds

of invertebrates, which are picked up from the sub-

strate or from mid water. Breeding takes place in rock

crevices, under pieces of rock at sandy bottom, or even

in empty gastropod shells, with clutch sizes between

100 and 250 eggs (Konings 1998).

Sampling and DNA extraction

One hundred forty individuals of Neolamprologus

caudopunctatus were sampled from seven localities in

the southern part of Lake Tanganyika: Wonzye

(N = 30), 08�43¢ S, 31�08¢ E; Mbita Island (N = 24),

08�46¢ S, 31�06¢ E; Katoto (N = 1), 08�48¢ S, 31�01¢ E;

Funda (N = 3), 08�46¢ S, 30�59¢ E; Katukula (N = 28),

08�43¢ S, 30�57¢ E; Tongwa (N = 26), 08�40¢ S,

30�53¢ E; Nakaku (N = 28), 08�39¢ S, 30�52¢ E (Fig. 1).

The sandy habitat stretch of Mbete Bay at the estuary

of the Izi river separates five sampling sites along a

continuous rocky shore line (Katoto, Funda, Katukula,

Tongwa, Nakaku) from the remaining two localities

(Mbita Island, Wonzye). Mbita Island is connected to

the mainland by a submerged ridge of continuous

rocky substrate (currently at a maximum depth of

25 m). Samples were collected during field trips in

October 2001 and March 2003. Whole genomic DNA

was extracted from fin clips preserved in 96% ethanol

applying proteinase K digestion followed by protein

precipitation with ammonium acetate.

Amplification and sequencing

We used the primers L-Pro-F (Meyer et al. 1994) and

TDK-D (Lee et al. 1995) to amplify the most variable

part of the mtDNA control region. The PCR reactions

were prepared for a total volume of 17 ll containing

0.085 ll of Taq DNA polymerase (BioThermTM),

1.7 ll of each primer (10 lM), 1.7 ll 10· dNTP mix,

1.7 ll 10· MgCl2 buffer, 1.62 ll enzyme diluent, 6 ll

high performance liquid chromatography (HPLC)

water, and 2.5 ll of the extracted DNA. Amplification

was performed on an Air-Thermo-Cycler (Idaho

Technologies) under the following conditions: an initial

denaturation phase at 94�C for 15 sec followed by 43

cycles with denaturation at 94�C for 0 sec, primer

annealing at 52�C for 0 sec, and extension at 72�C for

15 sec. The PCR-products were purified with ExoSAP-

IT (Amersham Biosciences) prior to being added as

template for chain termination sequencing with the

primer L-Pro-F following the protocol described in

Duftner et al. (2005). Ambiguous sequences were

resolved by sequencing with the reverse primer TDK-

D. Electropherograms of unique haplotypes were

double-checked for accurate base calling. DNA frag-

ments were purified with SephadexTM G-50 (Amer-

sham Biosciences) following the manufacturer’s

instruction and subsequently visualized on an ABI

3100 sequencer (Applied Biosystems). All sequences

are available from GeneBank under the accession

numbers DQ628768–DQ628907 (see Appendix).

Data analysis

DNA sequences were individually aligned by eye using

the SEQUENCE NAVIGATOR software (Applied Biosys-

tems). The alignment comprised 140 individuals of

N. caudopunctatus with a total sequence length of

327 base pairs (bp). In order to visualize the phyloge-

ographic relationships among the samples, we applied

two network construction algorithms, the method of

statistical parsimony implemented in the computer

program TCS (Clement et al. 2000) and the median-

joining network approach (Bandelt et al. 1999) in the

computer program NETWORK (version 4.112 available at

http://www.fluxus-engineering.com/sharenet.htm).

Locations with sufficiently large sample sizes

(N = 24–30 individuals; Wonzye, Mbita Island, Katukula,

Tongwa, Nakaku) were included in population analy-

ses. Diversity indices were calculated in DNASP 4.0

(Rozas et al. 2003) and population differentiation was

estimated as hST (Weir and Cockerham 1984) and FST

(Excoffier et al. 1992) in ARLEQUIN v.2.0 (Schneider

et al. 1999). Type I errors in pair-wise population

comparisons were controlled using the method of

Benjamini and Hochberg (1995).

Our data indicated genetic continuity between

populations on each side of Mbete Bay, and samples
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were accordingly pooled into an eastern and a western

clade for further analysis of divergence time and

demographic history. Divergence estimates [mean

pair-wise sequence divergence (DXY) and net diver-

gence (DA)] were calculated in DNASP 4.0 (Rozas et al.

2003). Additionally, we used coalescence simulations

in IM [available at http://lifesci.rutgers.edu/~heylab/

HeylabSoftware.htm#IM; based on a method originally

developed by Nielsen and Wakeley (2001)] to obtain

parameters of divergence time (T = Tdivl) and population

size (h = 4Nel) under the assumption of population

size changes but setting migration rates to zero. Four

runs with >7,000,000 steps and a burn-in time of

1,000,000 steps under a finite-sites model (HKY;

Hasegawa et al. 1985) were performed to ensure con-

vergence of parameter estimates. Population size

changes were examined by coalescence simulations

using the program FLUCTUATE (Kuhner et al. 1998)

employing HKY mutation parameter estimates

obtained from PAUP* (Swofford 2001). Twenty short

chains of 20,000 steps and 5 long chains of 2,000,000

steps were run three times for each group of populations

Fig. 1 Map of Lake
Tanganyika, East Africa, with
location of sampling localities
along the southern shore.
Dashed lines indicate the
three deepwater basins of the
lake (NB, northern basin; CB,
central basin; SB, southern
basin). Bathymetric lines are
approximated according to
Fig. 1 in Gasse et al. (1989).
Sandy or muddy beaches are
indicated by dashed lines
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to ensure convergence of the estimates. Mismatch

distributions were calculated in DNASP 4.0 (Rozas et al.

2003), and time to the start of population growth was

inferred from the parameter s = 2 lt. The fit of the

observed haplotype mismatch distributions to the dis-

tributions based on growth parameter estimates was

evaluated by a Kolmogorov–Smirnov test.

To detect potential bottleneck effects in the recent

past we applied a test for heterozygosity excess under

the IAM (Cornuet and Luikart 1996), implemented in

the program BOTTLENECK (Piry et al. 1997), and inves-

tigated the frequency spectrum of haplotype classes

(Luikart et al. 1998).

To compare the population structure of several

rock-dwelling cichlids across Mbete Bay, we conducted

a hierarchical AMOVA (Excoffier et al. 1992) using

this data set and the data sets used in Duftner et al.

(2006) and Sefc et al. (unpublished).

Results

Genetic variability within populations was moderate

with an average of 8 haplotypes, 0.5 % mean nucleo-

tide diversity and 79% mean haplotype diversity

(Table 1). The total sample (n = 140) included 31 dif-

ferent haplotypes in two distinct clades (Fig. 2).

Haplotype networks constructed by two alternative

algorithms (statistical parsimony in TCS and median

joining in NETWORK) were identical and revealed

complete population subdivision across the approxi-

mately 7 km of sandy shoreline of Mbete Bay. Samples

collected at locations west of Mbete Bay (Nakaku,

Tongwa, Katukula, Funda, Katoto) were separated by

two fixed substitutions from specimens collected east

of the bay (Mbita Island, Wonzye). Within each clade,

the most frequent haplotypes were closely related and

shared among populations, and numerous unique or

low-frequency haplotypes were derived by one or a few

mutations from the central haplotypes.

Complete lineage sorting between clades natu-

rally entailed highly significant differentiation esti-

mates in population comparisons across Mbete Bay;

whereas, populations on either side of the bay were

not significantly differentiated from each other

(Table 2; note that Funda and Katoto were not

included in this analysis due to small sizes < 5

individuals).

Given the lack of differentiation within each clade,

populations on each side of Mbete Bay were pooled for

the estimation of demographic population parameters.

The conversion of parameter estimates for divergence

time, population size and growth used a substitution

rate of 6.5 – 8.8% per million years calculated for the

most variable part of the mitochondrial control region

(Sturmbauer et al. 2001) that includes the 327 bp

fragment analyzed here (l = 1.063 · 10–5–1.4388 · 10–5

per site). Pair-wise net sequence differences

(DA = 0.01699) and coalescence simulations allowing

for population size changes in IM dated the divergence

between clades to ~170,000–260,000 years BP

(193,181–261,538 years BP calculated from DA;

170,000–250,000 years BP in IM simulations). Unimo-

dal mismatch distributions with s estimates of 1.291

and 1.323 for the eastern and western clade, respec-

tively, were consistent with recent population expan-

sions in each clade starting at ~45,000–60,000 years BP

(44,864–62,244 and. 45,976–60,739 years BP, respectively;

Fig. 3). Exponential growth parameter estimates from

FLUCTUATE (g = 985, 82 in the eastern and g = 940, 72 in

the western clade) translate to growth rates of 3.2 · 10–5–

4.3 · 10–5 and 3.1 · 10–5–4.1 · 10–5 per generation,

and present-day effective population sizes were esti-

mated as Ne = 570,000 – 770,000 in the eastern clade

and Ne = 1,360,000–1,850,000 in the western clade (h
values averaged over three FLUCTUATE runs were 0.025

and 0.06 for east and west, respectively). Simulations in

IM were consistent with FLUCTUATE in indicating a two

times higher population size in the western clade, but

absolute numbers for each clade were considerably

Table 1 Sample size (N) and genetic diversity of mtDNA
control region sequences in five populations of N.
caudopunctatus. For each population the number of haplotypes

(h), nucleotide diversity (p), gene diversity (He), and average
number of nucleotide differences (k) are given

N h p He k

Wonzye 30 6 0.00329 0.729 1.076
Mbita Island 24 8 0.00480 0.764 1.569
Katukula 28 8 0.00680 0.847 2.222
Tongwa 26 7 0.00342 0.757 1.117
Nakaku 28 12 0.00554 0.870 1.812
Mean (s.d) 27.2 (2.28) 8.2 (2.28) 0.00477 (0.001477) 0.793 (0.06139) 1.559 (0.4828)
Total 140 31 0.01297 0.905 4.242
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lower than FLUCTUATE estimates (east, Ne = 300,000–

410,000; west, Ne = 820,000–1,100,000).

Despite the low genetic diversity and evidence of

population expansion, a recent population bottleneck

was refuted by L-shaped haplotype frequency distri-

butions (Fig. 2b) and conformity of gene diversity

estimates with equilibrium expectations under the IAM

in both clades (west, observed He = 0.838, Heq = 0.856,

p = 0.26; east, observed He = 0.753, Heq = 0.753,

p = 0.38).

Discussion

Correlations between habitat preferences, habitat

structure and population differentiation in lacustrine

cichlids were first described in the haplochromines of

Lake Malawi (Van Oppen et al. 1997; Arnegard et al.

1999; Markert et al. 1999; Danley et al. 2000; Pereyra

et al. 2004). The accumulating data on population

structure in Lake Tanganyika cichlids suggest a

higher diversity in patterns of differentiation in the

Fig. 2 (a) Haplotype network of N. caudopunctatus. Circle
diameters are proportional to the number of individual
sequences per haplotype. Small open circles represent unsam-

pled haplotypes. (b) Haplotype frequency distribution in popu-
lations east and west of Mbete Bay. Values along the x-axis are
the absolute frequencies for each haplotype class
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phylogenetically older and more diverse species

assemblage. In analyses of populations sampled along

the south-western shoreline of Lake Tanganyika, a

7 km wide stretch of shallow sandy/muddy coast in

Mbete Bay was identified as a major barrier to nuclear

and mitochondrial gene flow for the strictly rock-

dwelling cichlids Variabilichromis moorii (tribe

Lamprologini; Duftner et al. 2006), Tropheus moorii

(tribe Tropheini), Eretmodus cyanostictus (tribe Eret-

modini) and, to a lesser degree, Ophthalmotilapia

ventralis (tribe Ectodini; Sefc et al., unpublished) (see

Table 3). However, patterns of population structure

differed among species along the mostly rocky shore-

line northwest of Mbete Bay (Table 3), and included

isolation by distance in E. cyanostictus, significant

differentiation regardless of geographic distance in

V. moorii and T. moorii, and panmixis in O. ventralis

(Duftner et al. 2006; Sefc et al. unpublished). In the

present study of Neolamprologus caudopunctatus, an

ecologically more flexible inhabitant of the rock-sand

interface, mitochondrial control region sequences

revealed a high level of genetic differentiation––that is,

complete lineage sorting––across Mbete Bay, indicat-

ing that the large sandy bay affects (female) dispersal

of N. caudopunctatus as much or even more than dis-

persal of the rock-dwelling species. In contrast to the

situation observed in E. cyanostictus, T. moorii and

V. moorii (Duftner et al. 2006; Sefc et al. unpublished),

no genetic structure was detected among populations

along ~20 km of mostly rocky shoreline west of Mbete

Bay and between the two populations of Mbita Island

and Wonzye separated by ~7 km of interspersed rocky

and sandy shoreline and shallow water between the

shore and the island. The lack of differentiation in the

absence of major habitat discontinuities is shared with

O. ventralis, but gene flow is probably due to different

behaviors in the two species. In the strictly rock-

dwelling O. ventralis, dispersal is mediated by swarms

of mouthbrooding mouthers and schools of juveniles

(Konings 1998), which may bridge unsuitable habitat

stretches during their migrations in open inshore water.

Although N. caudopunctatus prefers the intermediate

habitat of the rock-sand interface, individual breeding

pairs were observed to occupy snail shells on pure

sandy bottom not too far from their preferred habitat,

but in contrast to O. ventralis, swarms of juveniles and

non-breeding adults remained stationary for periods of

two months or more (Schaedelin, pers. communica-

tion). Their tolerance for suboptimal habitat may

enable N. caudopunctatus to maintain genetic conti-

nuity across minor habitat interruptions, but unlike

O. ventralis, (female) dispersal behavior apparently

does not include long-distance migration across major

barriers such as Mbete Bay.

The split between populations east and west of

Mbete Bay was dated to 170,000 to 260,000 years BP.

Given the relatively frequent occurrence of water level

changes in the history of the lake, and the large con-

fidence intervals around genetic estimates of population

Table 2 Pair-wise population differentiation values between five populations of N. caudopunctatus. Number of private haplotypes (p)
are given for each population. hST values are shown above diagonal, FST values below diagonal

p Wonzye Mbita Island Katukula Tongwa Nakaku

Wonzye 3 - 0.040 0.213*** 0.257*** 0.201***
Mbita Island 5 0.043 – 0.194*** 0.239*** 0.182***
Katukula 5 0.777*** 0.744*** – 0.040 0.013
Tongwa 2 0.842*** 0.810*** 0.066 – 0.019
Nakaku 7 0.791*** 0.758*** 0.044 0.000 –

Significance levels < 0.001 are indicated as ***; all other values were not significantly different from zero after correction for multiple
comparisons (Benjamini and Hochberg 1995)

Fig. 3 Mismatch distributions in populations east and west of
Mbete Bay. Solid lines represent observed mismatch distribu-
tions among haplotype sequences; dashed lines represent
expected distributions based on parameter estimates
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divergence times, the alignment of demographic and

hydrologic events is problematic. Still, it is compelling,

that the divergence time estimate coincides with a

period of rising lake levels at 190,000 – 260,000 years

BP following a lowstand of about 350 m below present

level (Cohen et al. 1997; note that estimates of the

exact magnitude of lake level drops differ between

studies, e.g. Scholz and Rosendahl 1988; Gasse et al.

1989; Lezzar et al. 1996; Cohen et al. 1997; Scholz et al.

2003). Lake level fluctuations not only entail changes

of habitat characteristics in the deeper lake basins, but

also trigger cycles of population fusion and fragmen-

tation through displacement of benthic communities

(Rossiter 1995; Sturmbauer 1998; Sturmbauer et al.

2001). The population structure of N. caudopunctatus

suggests that a single population existed during the

–350 m water lowstand, and that this population was

split into the extant western and eastern clade, when the

lake level rose and the sub-populations colonized newly

available habitat on either side of Mbete Bay. Given

that our data demonstrate gene flow along mostly

continuous habitat, a permanent dispersal barrier must

have emerged to prevent further exchange during all

subsequent lake level fluctuations (Cohen et al. 1997;

Scholz et al. 2003). A longstanding barrier to gene flow

in the region of Mbete Bay is also reflected in the

population structure of other specialized rock dwellers

studied so far, but mitochondrial sequence data suggest

that the population splits might date back to different

points in time in different species. While O. ventralis

shows evidence of past and possibly ongoing exchange

of haplotypes across Mbete Bay (Sefc et al. unpub-

lished), population divergence across the bay is high in

the philopatric rock dwellers Eretmodus cyanostictus,

Tropheus moorii and Variabilichromis moorii (Duftner

et al. 2006; Sefc et al. unpublished).

The demographic history of N. caudopunctatus, as

inferred from mitochondrial sequence polymorphisms,

differs from other rock dwelling species studied so far

in the same area. Nucleotide and haplotype diversity

estimates within each population of N. caudopunctatus

were lower than in populations of V. moorii, T. moorii

and E. cyanostictus, and similar to populations of O. ventralis.

Recent population expansions starting from small

population sizes around 45,000–60,000 years BP were

inferred from the haplotype genealogies of both the

eastern and the western clade, and could explain the

comparatively low long-term effective population sizes

implied by modest genetic diversity, although the data

bear no signal of a genetic bottleneck. In comparison,

population growth in T. moorii and E. cyanostictus

dates back at least twice as long (Sefc et al. unpub-

lished), possibly indicating species-specific responses to

common environmental factors.

Differences in demographic histories and population

sizes influenced rates of genetic drift and lineage sort-

ing and complicate comparisons of genetic differenti-

ation between species. For example, shared haplotypes

between populations of the highly structured V. moorii

across Mbete Bay in contrast to reciprocal monophyly

between eastern and western clades of the less

philopatric N. caudopunctatus do not necessarily imply

higher or more recent gene flow in V. moorii, but could

equally reflect differential retention of ancestral poly-

morphism due to different long-term effective popu-

lation sizes. Despite such potential caveats,

comparative analyses of phylogeography and popula-

tion structure have proven extremely powerful in the

discrimination of general and species-specific factors

shaping the evolutionary histories of organisms. For

example, phylogeographic reconstructions of ecologi-

cally diverse seahorses in Southeast Asia revealed a

consistent signature of Pleistocene isolation of marine

basins in all four species, while species-specific

phylogeographic patterns were congruent with expec-

tations based on individual ecologies (Lourie et al.

2005). Similarly, phylogeographic patterns of lizard

and frog species in the Wet Tropics of Australia

demonstrated common effects of Pleistocene habitat

fragmentation overlaid by species-specific ecological

characteristics (Schneider et al. 1998). Spatial genetic

structure was found to be correlated with ecological

Table 3 Population differentiation in different rock-dwelling
cichlid species across Mbete Bay illustrated by a hierarchical
AMOVA. FSC refers to the amount of molecular variance

among populations along continuous rocky shorelines east and
west of Mbete Bay, respectively; FCT corresponds to the amount
of molecular variance across Mbete Bay

FSC FCT FST

N. caudopunctatus 0.046* 0.773*** 0.784***
V. mooriia 0.533*** 0.099 0.579***
E. cyanostictusb 0.101*** 0.334*** 0.402***
O. ventralisb –0.009 0.390*** 0.396***
T. mooriib 0.114*** 0.587*** 0.635***

Data: a Duftner et al. (2006); b Sefc et al. (unpublished)

Significance levels < 0.05 and < 0.001 are indicated as * and *** respectively; all other values were not significantly different from zero
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specialization in carabid beetle species (Brouat et al.

2003) and with habitat preferences in Atlantic surgeon

fishes (Rocha et al. 2002). In contrast, genetic structure

and reconstructed population history were not concor-

dant across ecologically similar, co-distributed species

of fruit bats in Malaysia and Thailand and indicated

complex relationships between ecology and biogeog-

raphy (Campbell et al. 2006). As becomes apparent

from available data on the cichlids of the East African

Great Lakes, population substructure and consequently

differentiation and diversification processes in these

fishes are the result of compound interactions between

multiple factors, which combine to create differentiated

responses to shared or analogous environmental con-

ditions. So far, studies on representatives of the highly

diversified species assemblage of Lake Tanganyika

essentially demonstrated more disparities than com-

monalities. Clearly, more species will have to be ana-

lyzed until generalities in patterns of population

differentiation will be discernible to allow the identifi-

cation of key ecological and life-history traits respon-

sible for shaping population structure.
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Appendix A

Haplotype numbers with according GenBank acces-

sion numbers, sampling localities and sample identifi-

cations.

Ht.
Nr.

Acc.
Nr.

Locality Sample ID

1 DQ628768–DQ628787 Nakaku 2974, 2976, 2985,
2989, 2992, 3050,
3058, 3386

Tongwa 2899, 2900, 2916,
2922

Katukula 2870, 2872, 2883,
2885, 2892, 3374

Funda 3346, 3347
2 DQ628788 Nakaku 2988
3 DQ628789 Nakaku 2991
4 DQ628790 Nakaku 3049
5 DQ628791 Katukula 2880

Ht.
Nr.

Acc.
Nr.

Locality Sample ID

6 DQ628792 Katukula 2886
7 DQ628793 Funda 3444
8 DQ628794–DQ628804 Nakaku 2987, 3052, 3056

Tongwa 2901, 2904, 2918
Katukula 2868, 2888,

2889, 3296
Katoto 3449

9 DQ628805 Tongwa 2903
10 DQ628806–DQ628830 Nakaku 2973, 2975, 2977,

2990, 3057, 3387
Tongwa 2895, 2898, 2902,

2906, 2907, 2908,
2911, 2913, 2914,
2915, 2917, 2921

Katukula 2869, 2871,
2879, 2882,
2887, 3298, 3299

11 DQ628831–DQ628832 Katukula 2874, 2881
12 DQ628833–DQ628838 Nakaku 3051, 3059, 3060

Tongwa 2893, 2905, 2919
13 DQ628839–DQ628841 Nakaku 3053

Tongwa 2909, 2912
14 DQ628842 Nakaku 3054
15 DQ628843 Nakaku 2972
16 DQ628844 Nakaku 3055
17 DQ628845 Tongwa 2897
18 DQ628846–DQ628851 Katukula 2865, 2866, 2867,

2877, 3372, 3373
19 DQ628852 Katukula 2873
20 DQ628853 Nakaku 2986
21 DQ628854 Mbita

Island
3302

22 DQ628855–DQ628858 Wonzye 3164, 3168,
3185, 3393

23 DQ628859–DQ628879 Mbita
Island

3085, 3091, 3092,
3100, 3102, 3103,
3105, 3108, 3112,
3119, 3300

Wonzye 3175, 3162, 3165,
3182, 3188,
3189, 3190,
3191, 3305, 3392

24 DQ628880 Mbita
Island

3106

25 DQ628881 Mbita
Island

3110

26 DQ628882–DQ628884 Mbita
Island

3087

Wonzye 3163, 3184
27 DQ628885–DQ628900 Mbita

Island
3089, 3101,

3107, 3389
Wonzye 3158, 3159,

3167, 3183,
3186, 3187, 3194,
3195, 3303, 3304,
3390, 3391

28 DQ628901 Wonzye 3161
29 DQ628902–DQ628903 Mbita

Island
3084, 3301

30 DQ628904 Wonzye 3160
31 DQ628905–DQ628907 Mbita

Island
3090, 3095, 3109
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Taylor MI, Rüber L, Verheyen E (2001) Microsatellites reveal
high levels of population substructuring in the species-poor
Eretmodine cichlid lineage. Proc R Soc Lond B 268:803–808

Taylor MI, Verheyen E (2001) Microsatellite data reveals weak
population substructuring in Copadichromis sp. ‘‘viriginalis
kajose’’, a demersal cichlid from Lake Malawi, Africa. J Fish
Biol 59:593–604

Turner GF (1994) Speciation mechanisms in Lake Malawi cich-
lids: a critical review. Adv Limn 44:139–160

Turner GF, Burrows MT (1995) A model of sympatric speciation
by sexual selection. Proc R Soc Lond B 260:287–292

Turner GF, Seehausen O, Knight KE, Allender CJ, Robinson
RL (2001) How many species of cichlid fishes are there in
African lakes? Mol Ecol 10:793–806

Van Oppen MJH, Turner GF, Rico C, Deutsch JC, Ibrahim KM,
Robinson RL, Hewitt GM (1997) Unusually fine-scale
genetic structuring found in rapidly speciating Malawi
cichlid fishes. Proc R Soc Lond B 264:1803–1812

Verheyen E, Salzburger W, Snoeks J, Meyer A (2003) Origin of
the superflock of cichlid fishes from Lake Victoria, East
Africa. Science 300:325–329

Weir BS, Cockerham CC (1984) Estimating F-statistics for the
analysis of population structure. Evolution 38:1358–1370

Genetica (2007) 130:121–131 131

123


	Genetic population structure as indirect measure of dispersal ability in a Lake Tanganyika cichlid
	Abstract
	Introduction
	Materials and methods
	Species information
	Sampling and DNA extraction
	Amplification and sequencing
	Data analysis
	Fig1
	Results
	Tab1
	Discussion
	Fig2
	Tab2
	Fig3
	Tab3
	Acknowledgements
	Appendix A
	Taba
	References
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27
	CR28
	CR29
	CR30
	CR31
	CR32
	CR33
	CR34
	CR35
	CR36
	CR37
	CR40
	CR41
	CR42
	CR43
	CR44
	CR45
	CR46
	CR47
	CR48
	CR49
	CR50
	CR51
	CR52
	CR54
	CR55
	CR56
	CR57
	CR58
	CR59
	CR60
	CR61
	CR62
	CR63
	CR64
	CR65
	CR66
	CR67
	CR68
	CR69
	CR70
	CR71
	CR72
	CR73
	CR74
	CR75
	CR76
	CR77
	CR78
	CR79


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


